
PHYSICAL REVIEW B VOLUME 40, NUMBER 8 15 SEPTEMBER 1989-I

Electronic structure and dispersion of compensated n-i-p-i superlattices
with small period lengths

J. Y. Lin and H. X. Jiang*
Department ofPhysics, Kansas State University, Cardweli Hall, Manhattan, Kansas 66506

(Received 13 March 1989)

A detailed calculation of energy-band structures and dispersion relation of compensated n-i-p-i
superlattices with small period lengths is presented. The calculation is based on a multistep-
function approach to the real potential form and the transfer-matrix method. The densities of states
of conduction subbands have been calculated. %'e found that the density of states is different for
difterent subbands. Some special features of small-period doping superlattices have been explored,
and are compared with properties of long-period n-I;p-i compensated doping superlattices as wel1 as
GaAs-Al„Ga& „As compositional superlattices.

I. INTRODUCTION

Recently, quantum wells and superlattices have at-
tracted a great deal of attention because of their novel
properties. ' The availability of this class of semicon-
ductor structures creates new avenues for the investiga-
tion of the physics of condensed matter under conditions
of greatly reduced dimensionality where quantum effects
become apparent, thus extending the underlying physics
to totally new fundamental phenomena. These structures
are also important materials for various device applica-
tions such as high-speed electronics, optoelectronics, and
photonic devices.

There are two types of superlattices with alternating
ultrafine layers: doping and compositional. The composi-
tional superlattices are composed of a periodic sequence
of alternating layers of two different kinds of composi-
tional materials. They have been investigated extensively
during the past few years. Among these, the GaAs-
Al Ga& As superlattices have been most studied. The
n -i -p-i superlattices consist of a periodic sequence of ul-
trathin layers of alternating doping [e.g., (n-type
GaAs)/(p-type GaAs)]. Despite the wealth of optical and
electrical properties discovered over the recent years,
n -i -p-i superlattices are much less understood compared
with compositional superlattices.

Since the first careful theoretical investigation on dop-
ing superlattices there have been many theoretical and
experimental works in this field. ' The energy bands in
doping superlattices are due to the space-charge-induced
band-edge modulation rather than the band-gap variation
as in compositional superlattices, which leads to an in-
direct energy gap in real space. Thus, electron and hole
states are spatially separated from each other. This is the
origin of the fascinating tunabilities of many physical
properties of doping superlattices, such as effective ener-

gy gap, absorption coeKcient, photoluminescence, and
electroluminescence, etc. These unique features show a
promising future for doping superlattices in practical ap-
plications.

Most previous works in this 6eld have emphasized, ex-

plicitly or implicitly, on doping superlattices with long
period lengths (L )500 A). The subband structures of
n-i-p-i superlattices have remained obscure for a long
time. Instead, the harmonic-oscillator-type energy levels
have been widely used to approximate the electron (hole)
energy levels in the imposed periodic potential wells.
In fact, many special features, such as the tunability of
the effective energy gap, greatly depend on the long car-
rier lifetime (t —1000 sec), which is the direct conse-
quence of the spatial separation of electron and hole
states, and the negligible tunneling probability between
adjacent wells. The latter requires a long period length,
which leads doped layered structures to be essentially
decoupled multiple quantum wells.

Experimentally, there were some limiting factors for
the growth of doping superlattices with thin periods due
to the solubility limit of impurities in the homogeneous
doping process. However, with the newly developed 6-
doping technique, Schubert et aI. were able to obtain
small-period doping superlattices with sawtooth-shaped
conduction- and valence-band edges. They discovered
some new electronic and photoluminescence properties
for small-period ( —100 A) n i pisupe-rlat-tic-es. Recent-
ly, Yan and Jiang' calculated the dispersion of electronic
subbands is compensated n -i-p-i superlattices by accu-
rate numerical computation. It was shown that the mini-
bands of n-i -p-i superlattices of the small period length
have finite widths, and the dispersion is comparable to
that of GaAs-A1„Ga, „As compositional superlattices of
the same period. Therefore, for small-period n-i -p-i su-
perlattices, the approximation of oscillator-type energy
levels to subbands is no longer adequate. Since many
unique properties of superlattices are closely related to
the subband structures, detailed and careful investigation
of these structures are essential.

In this paper, we describe a detailed method of calcula-
tion of the subband structures and dispersion of compen-
sated n-i-p-i superlattices. The effective energy gaps of
heavy and light holes, are also investigated. The density
of states are obtained from the dispersion relation. Some
unique properties are explored.
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II. CALCULATIONS

A n-i-p-i superlattices is a periodic sequence of ul-
trathin n-type and p-type doped layers with intrinsic lay-
ers in between. The imposed periodic potential is caused
by the positively charge ionized donors in the n-type lay-
ers and the negatively charged acceptors in the p-type
layers. In the calculation, we assume that the doping is
homogeneous, i.e., the doping concentration nD and n~
are constants in the respective doping layers. The poten-
tial fluctuations, which arise from the statistical distribu-
tion of the dopants in the layer and the point-charge
character of the impurities, have been neglected. The
effects of the point-charge character of the impurities

have been discussed in Ref. 3. The authors concluded
that the effects on the electrons are negligible. Further-
more, we should restrict ourselves in the case of the com-
pensated doping semiconductor superlattices, which re-
quires nDd„=n~d, where d„and d are the thicknesses
of n- and p-type layers, respectively. In this case, by in-
tegrating the Poisson's equation, we get the periodic
space-charge potential as

V(z) = Vo(z —mL), L/2—z mL —&L/2

with m =0,+1,+2, . . . , and z along the growth direc-
tion, and

nDz, ~z &d„/2
2 2

Vo(z) = X nDd„( ~z~
—d„/4), d„ /2 & ~z~

& d„ /2+4;
nDd„(d„/4+d;) —n~[(L/2 —

~z~) —d~/4], d„/2+d, & ~z &L/2 .

(2a)

(2b)

(2c)

Here d, is the thickness of the intrinsic layer. The period
length is thus L =d„+d +2d, . This form of periodic
potential makes an exact analytic solution of the
Schrodinger equation unfeasible. There have, however,
been several attempts in trying to solve the Schrodinger
equation numerically with various shapes of poten-
tial. " ' Of those, Ando and Ithoh' proposed a
multistep-function approach to an 'arbitrary potential
form and calculated the transmission tunneling current
across the potential. This method turns out to be very
simple and, nevertheless, easy to achieve high accuracy.
We have applied this method to the periodic potential of
Eq. (2) and calculated the corresponding band structures
by the transfer-matrix method. '

Figure 1(a) shows the band profile of the compensated
n -i -p -i semiconductor superlat tice with d; =d„=d
=L/4. Figures 1(b) and 1(c) show the potential of Eq. (2)
with the approximation of the multistep functions with
40 and 200 steps in one period, respectively. They can be
expressed as

V(x)= V) = V[(z, +z )/2],
m *(x)=m *=m *[(z,+z. )/2],

0'~ (z ) = A I"exp( ikj z ) +B"exp( ik z—),
where

k,. = [2m '(E —V ) ] ' /g

(b)

X

for z
&
(z (z, j =0, 1,2, . . . , N, where X is the total

number of steps in one period. Here z is the coordinate
for jth step and m * is the effective mass of electrons or
holes. For X =40, the difference between the real poten-
tial and multistep-potential approximation in Fig. 1(b) is
obvious. However, as the total steps in each period ap-
proach to X =200 in Fig. 1(c), the difi'erence between the
real potential and multistep-potential approximation can-
not easily be distinguished. So the results obtained here
can represent the exact solution. With the multistep-
potential approach, the wave function 4" in the jth step
region of the nth period can be written as

FIG. 1. (a) Schematic of the space-charge potential of a com-
pensated n -E' -p -i semiconductor superlattice with d; =d„
=d~ =L/4; L is the period length. (b) and (c) are the approxi-
mation by the multistep functions with a total of 40 and 200
steps in each period, respectively.



. . . n-i-p-i SUPERLATTICES WITH SMALL PERIOD LENGTHS 5563

where k can be real or imaginary depending on whether
energy E is larger or smaller than the jth step potential
V . Using the continuity conditions of wave functions
and its derivative at the interfaces of adjacent steps, we
have

'gn '

J
gn

J

where

=+M;
i=0

AO

gn
Q

(6)

(1+S,)exp[ i—(k, +,—k, )z, ] (1—S, )exp[ i (k;+—, +k, )z, ]
(1—S; )exp[i (k, +,+k, )z, ] (1+S,)exp[i (k, +, —k; )z; ]

(7)

and

S;= m,.*+, ki

m;* k, +1

For simplicity, we assume that the effective mass is the
same everywhere in the system, then we have
S,. =k, /k, . +,. Note that

n gn —1e' N —1 gn gn —1e ' N —1

Q

and so

with

AN gn —1
N

=M
N +N

M» M12
M=

M 21 M22

N —1= gM;
i=0

i.kN —Le

0

0
—ik I.

e N —
1

From Eqs. (6) and (7), the determinant of matrix M is
unity, det~M~=1, and from the requirement that the
wave function of the electron (hole) must be finite, we can
define a real parameter q, which is related to the energy
by the equation'

cos( qL ) = —,
' Tr(M ) . (10)

III. RESULTS AND DISCUSSIONS

In this paper, the calculations are performed for the
compensated n-i -p-i GaAs superlattices. The dielectric
constant e and electron effective mass are 12.5 and
0.067mQ, respectively. ' ' Effective masses of heavy and
light holes are 0.45mo and 0.08mQ, respectively, where
mQ is the electron mass in free space. The energy gap of
GaAs has been taken as 1.520 eV. '

Figure 2 shows the dispersion of the first conduction
band for a GaAs n ip isupe-rlatt-ice ( ———) with
n~=n~ =10' /cm, d, =d„=dp L/4 and L 120 A.
For comparison, the dispersion of the same band for a
GaAs-A1Q 3GaQ 7As compositional superlattice of equal
well and barrier widths, a =b =L /2, and L =120 A, is

Equations (7), (9), and (10) give the dispersion relation of
the system. With increasing N, Eq. (10) approaches the
exact solution of the system. Practically, with 200 steps
in each period, we can obtain results of sufficient accura-
cy. The results presented in this paper are obtained with
X =200.
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FICx. 2. Comparison of dispersions of the first conduction
band for a CxaAs n -i -p -i superlattice ( ———) at

0
nD=n& =10" cm ', d;=d„=d~=L/4 and L =120 A with a
GaAs-A1Q 3GaQ7As compositional superlattice ( ) of equal
well and barrier widths, a =b =L/2 and L =120 A.

shown as a solid line. The result of compositional super-
lattice is obtained by using the empirical expression,
E = 1.155x +0.37x eV, as the direct band-gap
difference between GaAs and Al„Ga1 „As materials. ' '
The conduction-band offset at the interface of GaAs and
Al Ga& As has been taken as 60% of the direct-band
gap difference between the two semiconductor materi-
als, ' ' and the effective mass of electron in the
Al Ga& As was taken as m =(0.067+0.083x)mo. '

From Fig. 2, we can see that the dispersion of the
n-i-p-i superlattice is quite different from that of the
GaAs-Al Ga, As compositional superlattice. The
ground-state energy of electrons in the n-i -p-i superlat-
tice is much lower than that in the corresponding compo-
sitional superlattice. In our case, the ground-state ener-
gies of electrons in n-i-p-i and compositional superlat-
tices are about 4.6 and 71.7 meV, respectively. The band-
width of the first conduction band of the doping superlat-
tice ( —37.2meV) is more than 1 order of magnitude
larger than that of compositional supe'rlattices (-2.9
meV). This is the direct consequence of the weaker elec-
tron confinement (also true for hole) in the doping super-
lattice than in the compositional superlattice. Therefore,
the coupling effects due to the adjacent layers are much
more important in doping superlattices in this case.
Another important feature can be distinguished between
these two superlattices, which is the wave-vector depen-
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dence of the effective mass, i.e., 1/m *=(I lfi )d E/dk .
For a doping superlattice, the dispersion is almost a para-
bolic curve except for a small region near the band edge
(0.95 m & qL & 1.0m). From the observation, we may con-
clude that the effective mass of the electron in a doping
superlattice is almost constant in the entire band (in-
dependent with wave vector, q). However, the electron
effective mass of a compositional superlattice strongly de-
pends on the wave vector q. It changes from a positive
value near the center of the band to a negative value near
the band edge. In the region of 0.40m. ~qL ~0.60m, the
dispersion is almost a linear curve, which indicates that
the effective mass is very large in this region.

Figure 3 is the plot of the first two conduction bands
(shaded area) as functions of doping concentration n at
d, =d„=d&=L/4, L =160 A, and na=n„=n Ele. c-
tron energies are measured from the bottom of the poten-
tial wells. The most significant feature observed here is
that the center of the band and the edge of the band have
different doping concentration dependencies. This is
especially evident for the first conduction band. The re-
sults obtained here are useful for interpreting photo-
luminesence experimental observations. At low tempera-
tures, with increasing the population of photoexcited car-
riers, the density of ionized impurities decreases due to
capture of carriers, and consequently the effective doping
concentration decreases. Results in Fig. 3 show that elec-
tron energies in the conduction band with respect to the
bottom of the potential wells decrease with decreasing
the doping concentration. However, the effective energy
gap, which is the energy difference between the minima
of the first conduction and valence minibands, is
significantly increased as the doping concentration is de-
creased. This is the consequence of decreased amplitude
of the space-charge potential with decreasing n. There-
fore, experimentally observed luminescence emission

peaks shift towards higher energies when the excitation
photon intensity is increased. Results in Fig. 3 indicate
that, besides the dominant effect of the space-charge po-
tential variation caused by changing of the ionized-
impurity concentration, the luminescence photon-energy
shift is also affected by the electron Fermi level changing
with excitation intensity. Additionally, results in Fig. 3
also modify the time-resolved luminescence spectral
shape of n -i -p-i doping superlattices. In general, during
the decay process, the concentration of ionized impurities
in the respective layers increases with increasing the de-
lay time due to carrier recombination. For long-period
n-i-p-i doping superlattices, the band structures are al-
most dispersionless, and thus the variation in time-
resolved emission spectra due to the Fermi level shifting
is negligible. In contrast, for short-period n -i -p-i doping
superlattices, one has to consider the fact that the Fermi
levels shift towards the bottom of the potential well as the
delay time increases. The relative decrease in the Fermi
level may reach a value in the order of 10 meV for short-
period doping superlattices, and thus the filling-states
effect ' cannot be neglected. Another feature in Fig. 3
is that widths of allowed conduction bands increase with
decreasing the doping concentration, while minigaps de-
crease and approach zero at n =0. This is because as n
decreases, the amplitude of the space-charge potential de-
creases, and thus reduces the confinement of electrons,
and therefore, the dispersion (or bandwidth) increases. In
contrast, this effect was never discussed for long-period
doping superlattices since they have negligible disper-
sions in minibands.

We also calculated the effective energy gap as a func-
tion of period length L. The result is depicted in Fig. 4,
where the doping concentration was chosen to be
nD=n„=10' cm and d„=d =d;=L/4. The solid
( ) and dotted ( ———

) lines represent the effective
energy gaps of heavy and light holes, respectively. In the
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FIG. 3. The first two allowed conduction minibands (shaded
area) and rninigaps as functions of doping density (nD =n „=n)
with d; =d„=d~ =L/4 and L =160 A.

FIG. 4. Effective energy gaps of heavy ( ) and light
( ———) holes as functions of period length L with
nD=nz =10' crn, d;=d„=d~=L/4.
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calculation, the eff'ect of mixing of light- and heavy-hole
bands has been neglected. As in the compositional super-
lattices, the effective energy gap for light holes is larger
than that of heavy holes. The effective energy gap also
represents the minimum energy required for creating ex-
citons if one neglects the Coulomb and phonon interac-
tions. One must notice here that in n -i -p -i doping super-
lattices, the space-charge induced band-edge modulation
rather than the band-gap variation in compositional su-
perlattices, leads to an indirect energy gap in real space.
A quantitative value of the exciton binding energy in
ri -i -p-i doping superlattices is unknown at this stage. In
order to obtain the exciton binding energy, one has to
solve the Schrodinger equation for electron-hole pairs in
the presence of the modulation potential of Eqs. (1) and
(2) plus the Coulomb interaction. As in the composition-
al superlattice, the effective energy gaps of heavy and
light holes in n-i-p-i superlattices decrease as L in-
creases. However, the effective energy gaps for two types
of superlattices have different kinds of dependencies on L.
For compositional superlattices, the energy difference be-
tween the edges of quantum wells of electrons and holes
is 6xed, which is the energy gap of GaAs material for
GaAs-Ga& Al As superlattices, and so the variation
with L in eff'ective energy gap is only due to the shift in
energy levels of electrons and holes (relative to the bot-
tom of quantum wells). For n i-p -i do-ping superlattices,
however, the variation in effective energy gap with L is
caused by two factors. One is the amplitude of the
space-charge potential increasing as L gets large, which
causes the energy diff'erence between the minima of po-
tential wells of electrons and holes to decrease, and thus
decreases the efFective energy gaps. Another factor is
that the ground-state energy levels of electrons and holes
(relative to the bottom of the potential well) increase as L
increases, which is also the consequence of increasing the
space-charge potential amplitudes (the effect of energy
levels decreasing due to quantum well width increasing is
small). The latter affects the heavy and light holes
differently since the effective energy gap of the heavy
holes decreases more quickly as shown in Fig. 4. The
effective energy gap obtained here is smaller than that ob-
tained from the harmonic-oscillator-type potential ap-
proximation, since the energy levels of electrons and
holes relative to the bottom of potential wells under that
approximation are independent with L. As seen from
Fig. 4, the splitting between heavy-hole and light-hole
effective energy gaps is small (in the order of a few meV).
However, this splitting increases with L, in contrast to
the results obtained for the GaAs-Ga& Al„As composi-
tional superlattice (x =0.3 and well width a is equal to
barrier width b), in which the splitting was in the order of
a few tens of meV and decreases as L increases. We at-
tribute this to the fact that for compositional superlat-
tices (a =b =L /2), the relative confinements of electrons
and holes decrease as L increases and thus the energy lev-
els of holes move closer to the bottom of the quantum
wells. Since this effect on the light hole is more pro-
nounced, as a result, the splitting between effective ener-
gy gaps decreases as L increases. For doping superlat-
tices, however, the potential height increases as L in-

I I ~

~ I I I I I ~ I I I 0 ~ i I I ~ I ~ II

10020 40 60 80
Energy (mev)

FIG. 5. Density of states of n -i -p -i doping superlattice with
n n p 10 CQl d& dry dp L /4, and L = 160 A.

creases, and therefore, the energy levels of holes move
away from the bottom of the potential wells. Since this
effect on the light hole is larger, as a result, the splitting
between effective energy gaps of heavy and light holes in-
creases with increasing L.

We have also calculated the density of states D (E), the
number of states in the energy interval E—+E+dE, from
the dispersion relation of Eq. (10). For one-dimensional
systems, we have

L dk
m dE

(L /m. )

dk

Figure 5 is a plot of the density of states D (E) (arbitrary
units) of the n i p-i dop-in-g superlattice at nD =n~ =10'
cm 3, d; =d„=dz =L /4, and L =160 A. As for compo-
sitional superlattices, there are singularities in D(E) near
the center of the band and the edge of the band, where
the dispersion in E(k) is nearly horizontal. The minima

I ~ I t I
' I

I t I t . I ) I 1 l

0 20 40 60 80 100 120

Energy (meV)

FIG. 6. Integrated density of states of n -i -p-i doping super-
lattice with na =n„=10' cm, d; =d„=d =L/4, and
L =300 A.
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of D (E) occur in places near the middle of minibands
(qL =0.5m. etc.). Figure 5 also reflects new features in
miniband structures. We can see that D(E) for different
energy levels are separated by minigaps. Figure 5 is very
useful for interpreting experimental results in optical ab-
sorption and recombination processes. For absorption,
the process takes place predominantly near the center of
band and the edge of band, where more states are avail-
able. However, the center of the band is much more im-
portant for absorption compared with the edge of the
band. This is because D(E) near the center of the band
region is less steep than at the edge of the band region.
This effect is especially pronounced for the first conduc-
tion band.

Figure 6 is a plot of the integrated density of states,
N(E)= J 0D(E')dE', of the n i-p i-do-ping superlattice
at n =n„=10' cm, and d;=d„=d =L/4 and
I.=300 A. Many essential differences between the short-
and long-period doping superlattices can be deduced
from the results shown in Fig. 6. First, for long-period
doping superlattices, N(E) increases stepwise, while for
short-period doping superlattices, the increase in N(E)
differs from stepwise because of the dispersion in energy.
This becomes more clear for higher conduction mini-
bands. Second, the number of the density of states N(E)
for each band is different, and increases with increasing n,
the band index. For large-period doping superlattices,
however, dispersion in each energy band vanishes, and

the number of the density of states, N (E), is the same for
each level, which is m,*/mtrt, where m,* denotes the
effective mass of the electron. From Fig. 6, the relative
values of the density of states for the first three conduc-
tion bands are N, (E):N2(E):N3(E)=1:1.17:1.24. Figure
6 also shows the miniband widths and band gaps as al-

ready discussed from the dispersion relations.

IV. CONCLUSION

By using the multistep-potential approach and the
matrix-transfer method, we have calculated the disper-
sion and miniband structure of n -i -p -i compensated dop-
ing superlattices of small periods. Dependence on both
period length and doping concentration has been dis-
cussed. The effective energy gaps of heavy and light
holes were also investigated. The densities of states of
conduction subbands were obtained from the dispersion
relation. The novel properties of small period n-i-p-i
doping superlattices have been explored, and compared
with properties of compositional superlattices as well as
n -i -p -i superlattices of long periods. With some
modifications, this multistep-approach method may also
be used to calculated the band structure of uncompensat-
ed n -i -p-i doping superlattices. The results obtained
here are useful both in basic research and device applica-
tions, especially for investigations of processes such as
optical absorption, energy transformation, and recom-
binations in n -i -p -i doping superlattices.
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